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Chemotactic collapse and mesenchymal morphogenesis
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We study the effect of chemotactic signaling among mesenchymal cells. We show that the particular physi-
ology of the mesenchymal cells allows one-dimensional collapse in contrast to the case of bacteria, and that the
mesenchymal morphogenesis represents thus a more complex type of pattern formation than those found in
bacterial colonies. We compare our theoretical predictions with recent in vitro experiments.
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I. INTRODUCTION

The development of spatial patterns is one of the most
important topics in embryology. The formation of structure
in embryology is known as morphogenesis. Although genes
play a crucial role in the control of pattern formation, the
importance of the mechanochemical interactions among the
cells and their environment has been recognized in several
works [1,2]. One of the advantages of this approach is that it
has the potential for self-correction in contrast to the Turing
chemical prepattern approach. Embryonic development is
usually a very stable process, with the embryo capable of
adjusting to many external disturbances. The prepattern ap-
proach implies the existence of potentially unstable pro-
cesses and makes it difficult for the embryo to make the
necessary adjustement to such disturbances as development
proceeds [2].

In this work, we are concerned with one type of early
embryonic cells known as dermal or mesenchymal cells, re-
sponsible for the formation of highly organized patterns on
skin such as the primordia, which become feathers and
scales, and the condensation of cells which mirror the carti-
lage pattern in developing limbs. Mesenchymal cells are ca-
pable of independent movement, due to long fingerlike pro-
tusions called filodopia which grab onto adhesive sites and
pull themselves along: Spatial aggregation patterns in these
appear as spatial variations in cell number density [3,4].
These cells can also secrete fibrous material which helps to
make up the extracellular matrix tissue within which the cells
move. However, experimental evidence indicates that there is
not such a secretion during chondrogenesis and pattern for-
mation of skin organ primordia [5], so we will neglect this
contribution to the dynamics.

Here, we will analyze the role of chemotaxis in mesen-
chymal morphogenesis. It is known that chemotactic signal-
ing is one of the most important mechanisms that lead to
pattern formation in bacterial colonies [6], suggesting that its
role might be crucial in morphogenesis. Actually, the pres-
ence of a powerful chemoattractant has been identified as
one of the active agents of pattern formation in mesenchymal
self-organization [7]. Probably, the simplest mathematical
model for chemotactic aggregation is the Keller-Segel model

[8]
dp=D,V’p—V (kpVc), (1a)
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dc=D.N?c + ap. (1b)

Here D, is the cellular diffusion constant, k the chemotactic
coefficient, « the rate of attractant production, and D, the
chemical diffusion constant. The terms in Eq. (1a) include
the diffusion of the cells and chemotactic drift. Equation (1b)
expresses the diffusion and production of attractant. Nondi-
mensionalizing the systems (la) and (1b) we get

dp=V’p-V(pVe), (2a)
edc=Vc+p, (2b)

where €=D,/D,.. An efficient chemotactic communication
implies that the diffusion of the cells is much slower than the
attractant diffusion, which leads us to consider e=0. We fi-
nally arrive at the following nonlinear partial differential sys-
tem:

ap=Vp-V(pVec), (3a)
- Vie=p—k, (3b)

where ky=|Q|™'fopdx, and ) is the region of the space
where the system is defined, and [Q] is its volume. Note that
the introduction of k, provides a solvability condition for
Eqgs. (3a) and (3b) in the case of no-flux boundary conditions
[9]. This system is known to blow up in finite time for di-
mension d =2, but all the solutions are regular for d=1 [10].
This means that in a three-dimensional system, while col-
lapse to infinite density lines and points can occur, collapse
to an infinite density sheet is mathematically impossible.
This fact crucially affects the patterns that can form [11,12].
Actually, both types of chemotactic collapse have been al-
ready observed in experiments performed with Escherichia
coli [13,14].

In the case of mesenchymal cells, far more complex than
a bacteria like Escherichia coli, the situation is more in-
volved. The supposition of short-range diffusion (or simply
diffusion), that applies well to dilute systems, is not, in gen-
eral, sufficiently accurate in such systems in which the cell
densities are relatively high. The long filopodia extended by
the cells can sense density variations beyond their nearest
neighbors and so we must include a nonlocal effect on dif-
fusive dispersal since the cells sense more distant densities
and so respond to neighboring averages as well [2].
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II. LONG-RANGE DIFFUSION

Long-range diffusion was traditionally modeled by the in-
clusion of a biharmonic term of the form V*. This comes
from the known fact that

. {p(x.1)) = p(x,1)

2
Vp e

, aaR—0, (4)
where (p) is the average density in a sphere of radius R about
X, that is

(px,D) = — J p(x+ 1. 0)dr, 5)
vy

where V is the sphere of radius R. Because R— 0, this sug-
gests in the one-dimensional case the following Taylor series
expansion:

p(x +r) =exp(rd,)p(x) = {] +%r2<1 +1r_;0€+ )ﬁi

+r(l+ér2(9§+ ---)&x]p(x). (6)

In the case of diffusion in an isotropic medium, after integra-
tion and truncation after the fourth term we obtain

o)) — plx.t) £ &1) _ (Do + R*Dyd)p+o(R®),  (7)

where the average is performed over the closed interval
[-R,R]. This way we get the following extended diffusion
equation:

9ip=(Dad; + R’Dyd)p. (8)

with D,,D,4>0. An initial value problem to Eq. (8) blows up
in finite time; this is a consequence of the asymptotic char-
acter of the functional Taylor expansion (7). Physically, this
means that the cells move randomly but up a cell density
gradient, a fact that goes against experiment. Further, the
next higher truncation leads to a better behaved equation, but
the corresponding solution is negative somewhere as known
from Pawula’s theorem [15]. Also, any approximation be-
yond the second order leads to a nonphysical increase of the
number of boundary conditions, so we have to conclude that
this is not a proper way to generalize diffusion. We can solve
this problem regrouping the terms in Eq. (7) in the manner of
Padé to get [16-18]

<p(x’t)> - P(x,t) ~ Dza)zc
R? 1 = RA(D,/D,)

—0. (9

The resulting extended diffusion equation is then
D,

T 1-R(DyDy)#" (10)

ap
where the diffusive operator is to be interpreted in the Fou-
rier transform sense
( D, ) D=1
1= R¥DyD)#") ~ 1= RADyD,) (- k)

Equation (10) seems to be a proper extension of the diffusive
aproximation to the nonlocal case as shown in Ref. [16].

5. (11)
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However, this operator was introduced in this reference to
simulate random motion in a lattice, while in the present
work we are concerned with an integral operator. Similar
expansions of integral operators have been already per-
formed in different contexts, such as a regularization of the
Chapman-Enskog expansion of the linear Boltzmann colli-
sional operator [17], or an extension of the free-energy func-
tional in the van der Waals theory of liquids [18]. The main
difference is that when dealing with an integral operator
some moments may not exist, and thus we cannot in prin-
ciple expand such an operator. However, there is a way to
circumvent this difficulty if we redefine the nonlocal ap-
proximate operator as

D,d,

1- &
where € is the ratio between the zeroth- and the second-
order moments (note that this keeps our basic assumption
that €« R?). This way we get the same long wavelength

behavior as that yielded by the full integral operator (see Ref.
[18] for the development of the theory).

(12)

III. CHEMOTACTIC COLLAPSE

We will see that considering long-range diffusion in sys-
tems (3a) and (3b) will lead to a finite time singularity in d
=1, that implies collapse to an infinite density sheet in a
three-dimensional system and to an infinite density line in a
two-dimensional system. We are going to show this fact ana-
Iytically, since numerical calculations are extremely unstable
for precisely computing the existence of blowups in partial
differential equations [19].

Studying the system in a one-dimensional space seems to
be the determination of the mathematical properties of a toy
model, but actually it is not. We only need to consider the
problem in a space of the number of dimensions correspond-
ing to the simultaneously contracting dimensions in the ex-
perimental setting. This is so because all the additional di-
mensions can remain invariant during the temporal
evolution, leading to the reduced description of the problem.
This is, if we observe chemotactic collapse in a one-
dimensional space, this means that the chemotactic collapse
can occur in a three-dimensional space forcing one dimen-
sion to collapse while the other two remain invariant. We
will thus consider the system

v Ve Vp+p? 1
dp=T" oy~ Ve Vptp = kop, (13a)

-Vic=p—k, (13b)

in one spatial dimension. Here, € is proportional to the mean
radius of a cell and the natural boundary conditions are no-
flux boundary conditions (with a long-range gradient in the
case of p)
Oy
p

1-€ ‘ﬁ i
where () is the closed interval Q=[-L,L], and JQ is its
boundary. Note that integrating the equation

axC|19Q= =0, (14)
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&
dp= 1_—22&)2(9 = dpdyc) (15)

over () and applying the boundary conditions we get the
conservation of the total mass of p (as it should be, since we
are only considering movement of the cells) and thus the
conservation in time of k,. To clarify the notation, let us
explicity write the norm of a function f belonging to a L({)
space, | sp <

1/p
Alri = (JQ Ifl”dX> : (16)

From Eq. (13a) we get

Iizn=fppzdx=fp % pdx
@ Jq o 1-€7,

—J pﬂxcéxpdx+J p3dx—k0f p*dx.
Q Q Q

(17)

Now, we are going to estimate all the terms appearing in the
right-hand side of this equation.

Integrating by parts the second term on the right-hand
side of Eq. (17)

d1l
LT
dtzllp( )

a,.pd.cpdx — f p&fcpdx,

J paxcaxpdx: pzaxc|(?ﬂ_f
Q Q

Q
(18)

that implies

1 1 k
fP5XC5deX=—_f pzafcdxz—f p3dx——OJ pidx.
Q 2Jq 2Ja 2J)q
(19)

The first term in the right-hand side of Eq. (17) can be esti-
mated as follows:

j % d<f %
JSroe’ T Pioest™
<f %
~ o |Pi-ea”
X a’z‘ (20)

P s
1-€3, |20

where we have used Holder’s inequality (see below). By
performing the shift of variables y=x/€, we get

&> 1 _azy_ N

X

P ="Gn p < G llelze.
1—- 62(9)26 2@ 6( ) 1—- (95 2o 6( ) €
(21)

p dx < ||pll 20

where N=|d,(1-32)7"|. Let us clarify this last step a bit
more. We have used the fact that the operator V2(1-V?)7! is
bounded on every L space, with 1 <p=-oo. This means that
we can be assured that [V2(1-V?) ]| <N|fllrrq) for
every f belonging to L({)) and a constant N that does not
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depend on f (and thus N is called the norm of the operator).
This fact can be easily seen once one realizes that the Fourier
transform of the operator V?(1-V?)~! is a bounded function
of the wave vector, and a rigorous proof can be found in
[20]. We can again shift variables x=¢€y to get

7 N o
0 pl _ Gzﬂipdx = ZHPHH(Q)' (22)

Finally, we can conclude our estimate as follows:

% % N,
fgpl—é'zé&pdxz_ fﬂpl_gﬁzxpdx Z—?”p“LZ(Q).
(23)

Now we are going to estimate the third term in Eq. (17)

f pldx= ||P||z3(m- (24)
Q

Holder’s inequality reads (for a rigorous proof of Holder’s
inequality see [21])

| wlde < il
0

1 1
Ispgso, —+-=1. (25)
P g
Choosing v=1 we get
| e =l )
O

where C=|Q)|"4. With this estimate we can claim that

(1/p)
Il = f prdx < Cllp?|p0) = C( J p2pdx>
Q 0

(2/3) ,
=C(fﬁw) = ol (27)
Q

where we have chosen p=3/2 (and correspondingly g=3).
This implies that

llollz3) = Dllpll2)- (28)

where D=|Q|~"/®. Therefore, we have the final estimate

d
liz) = Aol 20) " = Blell, — (29)

where A,B>0 are constants, A=|Q|™"? and B=2N/€&*+k,.
We are thus going to study the dynamical system

dx = Ax*? - Bx. (30)
dt

This system has two fixed points, x=0 and x=(B/A)>>0. A
linear stability analysis reveals that the positive fixed point is
linearly unstable, meaning that every initial condition x
> (B/A)?* will stay above this value for all times. Further, we
know that the solution will grow without bound in this case,
so we can claim the existence of two constants 7<% and
0<Cy<A, such that Ax**(¢)—Bx(t) > Cox¥*(t) for every ¢
>ty. This implies that
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d
ZPliz) > Colllel o) (31)

for t>1,, and for an adequate initial condition. Solving this
equation gives
1

2
”P('J)Hﬂ(g) >
-1 Co
”P('Jl)”LZ(Q) - ?t

for t>1,>1,, and for an adequate initial condition. Every
adequate initial condition must fulfill

(32)

1

5 4N? AN 5
It 002> =g+~ Z ot Ol + et Ol

(33)

such as, for instance, p(x,0)=(x?+8)""* and & small enough.

Thus we are finally led to conclude that the system does
blow up in finite time.

IV. CONCLUSIONS

It has been argued that each of the aggregates in a pattern
corresponds to a density singularity in the hydrodynamic de-
scription of the cells [11]. Our analysis predicts a different
way of pattern formation from the usual models of chemot-
actic aggregation. In particular, an initial diffusive band can
form a singularity by collapsing only one of its dimensions
to zero thickness. This type of one-dimensional collapse has
been already empirically observed: in vitro experiments
showed that mesenchymal cells are able to aggregate by col-
lapsing only one of the dimensions of the culture into stripes
[7]. After a few days, an initial homogeneous layer begins to
develop spatial structure, the cells beginning to align with
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their neighbors to form “swirls.” This might be related to the
fact that the homogeneous layer is not the “adequate” initial
condition that we derived in our theoretical analysis. They
can in contrast aggregate by collapsing two spatial dimen-
sions following a standard Keller-Segel mechanism. When
the distribution of cells is driven far enough from the homo-
geneous distribution, the “adequate” initial condition is then
achieved, and the culture of cells begins to aggregate by
collapsing only one of its dimensions into ridges. Quantita-
tive testing of the theory is possible since Eq. (32) suggests
one type of critical behavior (chemotactic collapse has the
structure of a dynamical phase transition from a statistical
mechanical point of view) characterized by certain measur-
able quantities under the form of critical exponents. In par-
ticular, we have [22]
A
max p(x,f) = ——, (34)
x \”f -1

for an adequate constant A and a blow-up time 7", which
implies that the critical exponent of our theory obeys «
=1/2. An additional experimentally testable prediction is
given by Eq. (33), which implies the existence of an optimal
system size [Q|=€*/(2N)|p|L1(q)- This strongly suggests that
the width of the stripes increases linearly with the number of
the cells making up the transversal dimension of the stripe.
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